Aliases: C62⋊11Dic3, (C3×C62)⋊2C4, C33⋊7(C22⋊C4), C3⋊2(C62⋊C4), C22⋊2(C33⋊C4), C32⋊5(C6.D4), (C6×C3⋊S3)⋊6C4, (C2×C6)⋊2(C32⋊C4), (C2×C3⋊S3)⋊5Dic3, (C2×C3⋊S3).41D6, (C3×C3⋊S3).17D4, C6.14(C2×C32⋊C4), (C2×C33⋊C4)⋊4C2, C3⋊S3.8(C3⋊D4), (C22×C3⋊S3).6S3, C2.7(C2×C33⋊C4), (C6×C3⋊S3).43C22, (C32×C6).21(C2×C4), (C3×C6).28(C2×Dic3), (C2×C6×C3⋊S3).6C2, SmallGroup(432,641)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C33 — C3×C3⋊S3 — C6×C3⋊S3 — C2×C33⋊C4 — C62⋊11Dic3 |
Generators and relations for C62⋊11Dic3
G = < a,b,c,d | a6=b6=c6=1, d2=c3, ab=ba, cac-1=a-1, dad-1=ab-1, cbc-1=b-1, dbd-1=a2b-1, dcd-1=c-1 >
Subgroups: 904 in 152 conjugacy classes, 25 normal (19 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, C23, C32, C32, Dic3, D6, C2×C6, C2×C6, C22⋊C4, C3×S3, C3⋊S3, C3⋊S3, C3×C6, C3×C6, C2×Dic3, C22×S3, C22×C6, C33, C32⋊C4, S3×C6, C2×C3⋊S3, C2×C3⋊S3, C62, C62, C6.D4, C3×C3⋊S3, C3×C3⋊S3, C32×C6, C32×C6, C2×C32⋊C4, S3×C2×C6, C22×C3⋊S3, C33⋊C4, C6×C3⋊S3, C6×C3⋊S3, C3×C62, C62⋊C4, C2×C33⋊C4, C2×C6×C3⋊S3, C62⋊11Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Dic3, D6, C22⋊C4, C2×Dic3, C3⋊D4, C32⋊C4, C6.D4, C2×C32⋊C4, C33⋊C4, C62⋊C4, C2×C33⋊C4, C62⋊11Dic3
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 6 2 4 3 5)(7 12 8 10 9 11)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)
(1 9 2 8 3 7)(4 12 5 11 6 10)(13 19 15 23 17 21)(14 24 16 22 18 20)
(1 23 8 13)(2 19 7 17)(3 21 9 15)(4 20 11 16)(5 22 10 14)(6 24 12 18)
G:=sub<Sym(24)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,6,2,4,3,5)(7,12,8,10,9,11)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,9,2,8,3,7)(4,12,5,11,6,10)(13,19,15,23,17,21)(14,24,16,22,18,20), (1,23,8,13)(2,19,7,17)(3,21,9,15)(4,20,11,16)(5,22,10,14)(6,24,12,18)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,6,2,4,3,5)(7,12,8,10,9,11)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,9,2,8,3,7)(4,12,5,11,6,10)(13,19,15,23,17,21)(14,24,16,22,18,20), (1,23,8,13)(2,19,7,17)(3,21,9,15)(4,20,11,16)(5,22,10,14)(6,24,12,18) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,6,2,4,3,5),(7,12,8,10,9,11),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24)], [(1,9,2,8,3,7),(4,12,5,11,6,10),(13,19,15,23,17,21),(14,24,16,22,18,20)], [(1,23,8,13),(2,19,7,17),(3,21,9,15),(4,20,11,16),(5,22,10,14),(6,24,12,18)]])
G:=TransitiveGroup(24,1286);
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | ··· | 3G | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | ··· | 6U | 6V | 6W | 6X | 6Y |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | ··· | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 |
size | 1 | 1 | 2 | 9 | 9 | 18 | 2 | 4 | ··· | 4 | 54 | 54 | 54 | 54 | 2 | 2 | 2 | 4 | ··· | 4 | 18 | 18 | 18 | 18 |
42 irreducible representations
Matrix representation of C62⋊11Dic3 ►in GL4(𝔽7) generated by
4 | 2 | 4 | 5 |
4 | 6 | 5 | 1 |
3 | 3 | 0 | 1 |
0 | 0 | 0 | 4 |
1 | 5 | 6 | 6 |
5 | 1 | 1 | 6 |
0 | 0 | 6 | 0 |
0 | 0 | 0 | 5 |
2 | 4 | 0 | 6 |
3 | 5 | 0 | 1 |
5 | 5 | 0 | 4 |
6 | 1 | 4 | 0 |
5 | 6 | 6 | 5 |
2 | 0 | 1 | 5 |
4 | 3 | 5 | 4 |
5 | 5 | 1 | 4 |
G:=sub<GL(4,GF(7))| [4,4,3,0,2,6,3,0,4,5,0,0,5,1,1,4],[1,5,0,0,5,1,0,0,6,1,6,0,6,6,0,5],[2,3,5,6,4,5,5,1,0,0,0,4,6,1,4,0],[5,2,4,5,6,0,3,5,6,1,5,1,5,5,4,4] >;
C62⋊11Dic3 in GAP, Magma, Sage, TeX
C_6^2\rtimes_{11}{\rm Dic}_3
% in TeX
G:=Group("C6^2:11Dic3");
// GroupNames label
G:=SmallGroup(432,641);
// by ID
G=gap.SmallGroup(432,641);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,28,141,2804,298,2693,1027,14118]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^6=c^6=1,d^2=c^3,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a*b^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^-1>;
// generators/relations